HUMANITY'S JOURNEY TO INTERSTELLAR SPACE

INTERSTELLAR

PROBE

Interstellar Probe Exploration Workshop October 10-12, 2018, Explorer's Club, NYC

Probing the Zodiacal Foregrounds and the Cosmic Backgrounds Oct 10, 2018

R. Chary (IPAC, Caltech), C. Beichman (JPL, Caltech), G. Bryden (JPL, Caltech), N. Turner (JPL, Caltech), J. Bock (Caltech)

Science Questions

Science Target

 A precise measurement of the optical, near-infrared and far-infrared sky brightness at wavelengths between 0.5 and 200 microns since it is uncertain by factors of 2-3.

Science Questions

- What is the contribution to the total sky brightness from first light galaxies (optical/NIR)?
- What is the contribution from dust obscured star-formation and accretion activity to the sky brightness (FIR)?
- Is there a contribution from Oort cloud and Kuiper belt dust in the outer solar system to the sky brightness (optical-FIR)?
- What is the relative contribution of asteroidal and cometary dust to the total zodiacal emission (MIR spectroscopy)?
- These measurements can only be obtained from a location beyond the asteroid belt since the local zodiacal emission outshines these sources by factors of 100-1000.

Measurements and Instrument Concept

· Measurement approach

- The goal is to measure the sky brightness in between stars, but including the regions that consist of galaxies.
- Ideally, the instrument would take images of the entire sky at these wavelengths as a function of heliocentric distance.
 However, the data volumes are likely to be prohibitive in which case it is optimal to image ~10*1 square degree fields (spanning ecliptic latitude) with high quality ancillary data.

Measurement requirements and Instrument concept

- At optical/NIR and FIR wavelengths, a lambda/delta lambda of 3-5 (e.g. ZEBRA; PI: J. Bock)
- At mid-infrared wavelengths (5- 30 microns), a lambda/delta_lambda of 20
- Diffraction limited spatial resolution with a 10-20 cm class telescope
- Field of view of >0.5 square degree
- Cold shutter to measure the dark current and instrumental background

Mission requirements for measurements

- Heliocentric distances of >5-50 AU
- Data bandwidth (5 TB per band for an all sky survey, 30 MB per field per wavelength for targeted fields)
- Active cooling for MIR/FIR instruments (~100 mK), passive cooling for optical/NIR (~80K).

Data products

- Calibrated images as a function of wavelength

Basic Instrument Parameters

Parameter	Current Best Estimate/Comments
Mass (kg)	10 Kg for optical/NIR payload only
Volume (cm)	20*20*30 for optical/NIR, study needs to be done for MIR/FIR
Power (W)	20W for optical/NIR
Thermal Requirements	80K detectors for optical/NIR, 100mK for FIR
Data Volume	5 TB per band for an all sky survey in one band, 30 MB per field per wavelength
Current TRL	High TRL (>6) except for high bandwidth downlink from R>5 AU
Duration of Experiment	Intermittent observations during a multi-year cruise phase
Other	Well baffled telescope